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Writing Xh = ajhxj (h = 0, 1, ... n), it is familiar that M(a, 13)
j=o

is also the maximum of the ratio (EZXh|l" )'/ [fo2Ift(eio) /']C, where A +
0

= 1. From sums of powers of linear forms we pass, by the classical
process, to integrals, and the theorem of Littlewood and Paley is the con-
sequence of the inequality (2) applied to the two extreme cases a = ,3' =
1/2 (p = 2) and ca = 13' = 1 (p = 1).
Remark: In our main theorem, the condition on the y's can be replaced

by one similar to that imposed on the x's. But this has no interesting ap-
plication. By passages to limits we can also obtain results about linear
operations from HP to LY, where p, q 1.

'Littlewood and Paley, Proc. London Math. Soc., 43, 105 (1937).
2 For a simple proof in the case of p = 2, see Hardy and Littlewood, Proc. Cambridge

Phil. Soc., 40, 103-107 (1938).
3 See Zygmund, A., Fundamenta Mathematicae, 30, 190 (1938).
4 A function f(z) = Zc,z", regular for Izi < 1, is said to belong to the class HP if

fo2w1 f(re'0) IPdo remains bounded as r -- 1. For the classical results of the theory
see, e.g., Zygmund, Trigonometrical Series, Chapter VII.

5 Thorin, G. O., Convexity Theorems, Uppsala, 1948, pp. 1-57, esp. 31-35.
6 Thorin, G. O., "An Extension of a Convexity Theorem Due to M. Riesz," Kungl.

Fysiografiska Sdllskapets i Lund Forhdndliger, 8 (1939), nr. 14. Tamarkin, J. D., and
Zygmund, A., "Proof of a Theorem of Thorin," Bull. the Am. Math. Soc., 50, 279-282
(1944). Salem, R., Sur une extension du theoreme de convexite de M. Marcel Riesz,
Colloquium Mathematicum, Wroclaw, 1947, Vol. I, pp. 6-8.

7 In the case ,B = 0, the condition is to be interpreted, as usual, as max. |Yhl < 1.
8 Thorin's idea (see footnote 5) of taking for f the kth power of an analytic function

and applying his convexity theorem, is basic for the whole argument. If we wanted to
restrict ourselves to the proof of the Littlewood-Paley result, the argument could be
simplified still further, since here we interpolate between a = 1 and a = 1/2, and we

could imitate more closely the proof of Thorin (see footnote 5, pp. 31-35).
9 See e.g. Marcinkiewicz and Zygmund, Fundamenta Mathematicae, 28, 131-166

(1937).
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The results of our first note' enable us to treat the following classes of
functions, all contained in (M:

= If; f ifI P-1eia I = 1f; N(LfI P) < + o}D V if; fifIP-,
9) = f; mid (f, g, h) e2forall gand h in V1,
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where p _ 1 and mid (X, ,u, v) designates the intermediate one of the
three numbers X, ,, v in accordance with the precise relations

mid (X, ,u, v) = max (min (, ,), min (,u, v), min (v, X))
= min (max (X, IA), max (,u, v), max (v, X)).

Obviously, 1 = a and 2, = V. The importance of the class V, is well
established, and the consideration of a, along with 2, is natural. Since in
the classical instances of our theory 9) can be identified as the totality of
measurable functions, we shall call any function in 9) a measurable
function.

In order to discuss a, we need to establish for the quantity Np(f) =
N( If P) l /z the inequalities

(1) (H6lder) ifp > 1 and p + q = pq, then N(fg) . Np(f)Nq(g);
(2)- (Minkowski) N,(f + g) . Np(f) + Np(g).

The proof of (1) begins with the observation that for a > 0, ,B> 0, and
y = l/[(q/p)l/q + (p/q)'Iv] the function -y(atP + f3t-), 0 < t < + cx,
has al/P1l/q as its absolute rninimum and assumes this value only when

t= = (,3q/ap)l/Nq. As a result we see that Ifg < y( If I'V" + g qt-q)
and hence that N(fg) < y(N(IfJIP)e + N(IgIq)tq) for all t > 0. On
putting N( If P) = a, N( g q) = A, and t = to in the latter inequality we
obtain (1). Since for p = 1 the inequality (2) has already been established
(as a special case of I (7)), we suppose that p > 1. The proof for this case
then begins with the observation that t + 7 P < 2p1( P + I' I P). We
therefore have N( If + g IP) _ 2P-1(N( If P) + N( gjP)), so that f + g is
in ,, wheneverf and g are. Consequently we can use (1) and the relation
f + gP < fIIf + gIP-1 + IgI If + gIP-1 toobtain

N(If + gIP) . N(jfI If + gI1-1) + N(jgj If + gjP-1)
< (Np(f) + Np(g))N(If + gIP)l/q

an inequality from which (2) follows at once. The Minkowski inequality
shows immediately that identification of functions f and g for which
Np(f - g) = 0 will permit us to treat ap as a real normed vector-lattice
with N. as its norm-function. It is easily verified that this identification
is the same for all values of p, two functions being identified if and only
if they are equal almost everywhere. We can now generalize I (10) to
read

(3) the normed vector space ap is complete (and hence a Banach space).
The proof will be sketched for p > 1. By definition the mapping 4 which
carries f into g = If If Ip-1 = IfIP sgn f maps ap onto a. It has as its
inverse the mapping I which carries g into f = g P sgn g. The local
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behavior of these mappings can be determined by an appeal to the in-
equalities2

21-PIT - nIP< JP- - nIiIp-1 _ Pl - nI(I'p' + I,1P-9)
which hold even for complex t and 7). The first yields 'If(gi) - T(g2) P _
2P-1 g g21 and hence Np(QI(gi) - 'J'(g2)) _ 2l/lN(g, - g2)l/P for all gl
and g2 in 0. Accordingly v' is continuous, belonging in fact to the Lip-
schitz class Lip i/p. Similarly, the second inequality yields 'ifi) -
4(f2)I _ P(If, - f21 IfiP-1 + If, - f21 If2IP-1) and hence, with the help
of the Holder inequality,

-- (f2)) _ pNP(f1 - f2) (Np(f1)p/q + Np(f2)P/)f .
Accordingly b is continuous, belonging on any bounded part of ap to the
associated Lipschitz class Lip 1. If now {fn} is a Cauchy sequence in p,
it is bounded and must therefore be carried by 4' into a Cauchy sequence
tg.}, gn = 4'(fn), in ~. The completeness of a shows that the latter se-
quence has a limit g in . Thus the function f = 'I'(g) is the limit of {fn I
in ap, by virtue of the continuity of T. This completes the proof. We
note further that we have obtained at the same time the following variant
of a result of Mazur :.

(4) The spaces &, p _ 1, are mutually homeomorphic and all have the
same linear dimension.

The first part of (4) follows from the fact that 4' maps ap homeomorphically
onto a, as shown above. The second results from a topological inter-
pretation of the linear dimension. It is well known that a Banach space
has finite linear dimension if and only if it is locally compact, in which
case it is homeomorphic to an n-dimensional Euclidean space and its linear
dimension is n. On the other hand, if the linear dimension of a Banach
space is infinite it is equal to the density-character of the space that is,
to the least among -the cardinal numbers of everywhere dense parts of the
space.
Turning now to the consideration of £p, we proceed to specialize and

sharpen the results of the previous paragraph. First we replace (1) by
the more detailed statement

(1') (Holder) if f e p,and g E £., then fg e 2 and L(fg) _ L( If I P)'/P
L( g q)l/l, the equality holding if and only if f If Pvl and g g l
are linearly dependent in 2 (when p = q = 2, if and only iff and g
are linearly dependent in 22)-

To show that fg e 2 under the present hypotheses, we appeal to I (13),
writingfg = jp(f', g') wheref' = fIf p-, g' = g g q-l e 2, and sp(X, A) =
I1 '11/VA l/e sgn X)IA. Thus we have
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I L(fg)I . L(Ifgl) = N(fg) < Np(f)Nq(g) = L(IffV)'1/PL( gIq)'49
by virtue of (1). In determining the conditions under which the extreme
terms here are equal, we may discard the trivial case where the last term
vanishes, one of the two functions f and g being a null function. The
indicated equality is equivalent to the continued equation =4=L(fg) =
L(Jfgl) = L(IfJ?P)eo + L(jgfQ)tO-' = L(IflPeo + jgfltO`), where to has
the value indicated in the proof of (1) and a- fixed determination of the
ambiguous sign is adopted for the remainder of the discussion. In view
of the relations =fg _ Ifg _ If Po + g qo-q, the continued equation for
the integrals holds if and only if ='fg = lfgj = If | ?'e + g o almost
everywhere. The second equation here holds if and only if g q =
(p/q)e"fIf ? almost everywhere. Consequently both equations hold if
and only if g g 2-l = (P/q)SQf If ?-' almost everywhere. The proof
of (1') is thereby completed. In a quite similar fashion we find that (2)
can be replaced by

(2') (Minkowski) iff and g are in ¶p, then f + g is in Vp and L( If +
g P)l/P < L(If P)"IP + L( g J)'/P the equality holding if and only
iff and g are linearly dependent in Yp and of !he same sign almost
everywhere.

To show thatf + g e 2, under the present hypotheses, we appeal to I (13),
writing (f + g) If + gj'P- = so(f', g') wheref' = fIfIP-1 g2 ggIg IP-'

and p(X, A) (Xli"/P sgn X + j,'/P sgn Iu) X "1P sgn X + I 1/P sgn
,u -. The result given in (2) now assumes the present form. Reviewing
the proof of (2) under the conditions postulated here we see that the
equality holds if and only if If + g = If +. g almost eve-rywhere
while If ', g[, and If + g J are linearly dependent ii 2 in harmony
with (1'); but these conditions are equivalent to those stated above.
Since 2p clearly contains af and Iff together with f, it is a linear sublattice
of Wp. Moreover the fact that the homeomorphic mapping b carries
?,'onto 2, where 2 is closed in a, shows that 2p is closed in ap. Accord-
ingly we have

(3') 2, is a closed linear subspace of ap (and hence is a Banach space).
We can give a rather wide extension of (4) which will cover not only the
spaces 2,, p > 1, arising from a fixed elementary integral but also the
spaces 2p arising from different elementary integrals. This is possible
because the space 22 is a generalized Euclidean or real Hilbert space, its
norm being obtained in the appropriate manner from the integral L(fg),
which depends linearly and symmetrically uponf and g. Two such spaces
are homeomorphic if and only if they have the same linear dimension, as
is well known. Hence we have
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(4') the spaces 2,, p > 1, arising from a fixed elementary integral are
mutually homeomorphic and all have the same linear dimension;
two such spaces arising from different elementary integrals are
homeomorphic if and only if they have the same linear dimension.

This result completes our discussion of the spaces 2,.
In the study' of the class 91, it is convenient to observe that mid (X,

u, v) is a positively homogeneous, continuous function satisfying the in-
equalities min (,u, v) < mid (X, ,u, v) < max (At, v), since we thereby
justify applications of I (13) and of the dominated-convergence theorem
at various points below. It is, of course, true that mid (X, ,u, v) has an
explicit expression in terms of X, ,u, v by means of addition, multiplication
by constants and formation of absolute values. Thus we can show at
once that

(5) iff= limfandf. e9 thenfeW.

In fact we have mid (fn, g, h) e 2 whenever g and h are in 2, and hence
conclude by the dominated-convergence theorem that mid (f, -g, h) =
lim mid (fn, g, h) is also in 2. We also have

(6) if fi, ..., fm are in WI and if Yp(Xi, .X.Am) is any positively homo-
geneous function of Baire (bounded or not) defined for - o <

Xk _ + o then v(fi, ..., fi) e 9); in psrticular, the functions
af, If I, f + g are measurable whenever f and g are.

Once the indicated particular cases have been handled, the general case
is obtained by passages to the limit similar to those used in deriving I (13)
from I (11). Taking the case of If as typical, we wish to show that mid
(Ifl, g, h) e 2 whenever g and h are in 2. By hypothesis the function
fn = mid (f, n(lgl + lhl), -n(IgI + IhI)) is in 2; and so also is the
function gn = mid (Ifn I, g, h). It is easily seen that lim fn(x) has the

n_co
value 0 or the value f(x) according as Ig(x) + I h(x) vanishes or not.
Hence lim gn = mid (If1, g, h), and the latter function is in 2 by the

n-b-

dominated-convergence theorem. In practice it is convenient to have
available the following criterion:

(7) whenff 0, a necessary and sufficient condition forf to be measurable
is that min (f, g) e 2 whenever g e 2 and g > 0.

The necessity of the stated condition results'immediately from the identity
min (f, g) = mid (f, g, 0). The sufficiency is established by noting that
for arbitrary g and h in 2 we have mid (f, g, h) = max (min (f, max
(g, h)), min (g, h)) e 2 sincemin (f, max (g, h)) = min (f, max (g, h,
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0)) + min (0, max (g, h)) e SV by hypothesis. From (7) and I (14) we
have

(8) the constant function 1 is measurable if and only if min (1, g) is
integrable whenever g is; and it is measurable whenever I (3) is
verified.

Hence we immediately obtain the following generalization of (6) above

(9) if 1, fi, ..., fm are measurable and if (p(Xi, ..., Xm) is any function
of Baire (bounded or not) defined for - a_ Xk < + co, then p(fi,
*-. f.) c-9.

We conclude our general remarks on measurable functions by noting some
criteria for integrability. First we have

(10) in order that a measurable function f be integrable it is necessary and
sufficient that N(f) < + co; and it is likewise necessary and sufficient
there exist -integrable functions g and h, such that g . f . h.

If f is integrable, then N(f) < + co and the second condition is satisfied
with g = h = f. If N(f) < + c we can find a function k e V such that

if _ k, since there exist elementary functions f,, such that If < Z Ifn II
co co n=l

ZE(IfnI) < + o, andthefunction k = Z IfnI is in V byvirtueof I (12).
n=l n=l

Thus N(f) < + o implies that g _ f _ h where g = -k and k = k are
in V. When there exist such g and h, we have f = mid (f, g, h) e V by
the definition of 9W. Since any integrable function is clearly measurable,
by direct application of the definition, we see that (10) yields the relations

(11) e= nW1n = {f;fe9,N(f) <+co}.

It follows immediately that

(12) I= {f; fIfIP-1e -9 N (f) < + co}
When 1 is measurable we can give the last result the sharper form,

(13) if 1 e N, then V. = S n . = f; f e N, Np (f)< + o I,
since (9) shows that the functions g = flf -l and f gI /" sgn g are
measurable together.

Finally we shall consider the connections between our theory of the
general integral and the theory of measure. By specializing I (5)-(7) we
see that an outer measure ,A * is defined for the subsets of X by putting
,u*( Y) = N(fy) where fy is the characteristic function of Yc X. Similarly,
we see from the properties of the general integral that the finite set-function
,i defined by putting ,u(Y) = L(fy) whenever fy e e is a completely additive
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measure. It is natural to define a set Y to be measurable if and only if
fy e 9X; but we must then consider how such sets are related to the ,u*-
measurable sets Y, characterized by the now classical condition that A*(Z) =
u*(Z n Y) + MA*(Z n Y') for all Z. A fundamental tool in this investiga-
tion is provided by the following result:

(14) if N(f) < + , there exists a function g e V such that If _ g and
N(f) = L(g)-in particular, if 1 e 9I and f is a characteristic
function, then g may be chosen to be a characteristic function.

Adopting a device used in the proof of (10) above, we select elementary

functions fin such that If . Z fmn = gm, N(f) < ,E( Ifmn I ) _ N(f) +
1/m and note that gn e £ and N(f) . L(gm) . N(f) 11/m in accordance
with I (12). It is then clear that g = lim min (g1, ..., gi) has the desired

properties. In the indicated special case, we may first suppose that g _ 1
since otherwise we can replace g by min (1, g) e S in accordance with (8);
and we may then suppose that g is a characteristic function, since other-
wise we can replace g by the characteristic function lim gn e ?, in accord-

ance with (9), (10) and the dominated-convergence theorem. From (14)
we obtain

(15) every measurable set is ,u*-measurable; but the converse is true if and
only if 1 E 9m.

We sketch the proof. Assuming Y to be measurable, we have to reduce
the inequality ,u*(Z) < ,u*(Z n Y) + M*(Z n Y') to an equality. Since
the reduction is automatic when /*(Z) = + o, we suppose that ,*(Z) <
+ c. Then (14) furnishes a function g e V such that fz _ g, Iu*(fz) =
L(g). Since fzny = fzfy . g fy = min (g, fy) < g we see that g fy e
A*(Z n Y) _ L(gfy). The inequalityfzny = fz(1 - fy) _ g(1- fy) =
g - gfy e S3 shows that ,t*(Z. n Y') . L(g -- gfy). By addition we obtain
U*(Z n Y) + ,*(Z n Y') . L(gfy) + L(g - gfy)=L(g)= *(Z), thereby
completing the discussion. Looking now at the converse, we see that
X is trivially ,u*-measurable and hence that the converse cannot hold
unless 1 = fx e WI. Assuming this necessary condition, we now show that
fy e by (7), whenever Y is ,u*-measurable. Starting with an arbitrary
non-negative integrable function g, we putfn = pn(g) _ ng,gn = gfn < g
where S0n is the characteristic function of the interval 1/n _ X _ + 0.
By (9) and (10) we see that fn and gn are integrable. Moreover fn is the
characteristic function of a set Z. with IM(Zn) = L(fn). Since min (fy,
g) = lim min (fY, gn) = lim min (fyfn, g) < g it suffices to show that

f'yfn e V. Since fyfn is the characteristic function of y n Zn, the special
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case of (14) furnishes us with a set Wn such that Y n Z, C W,, IJ*( Y n
Zn) -I(Wn). We may suppose that Wn C Zn, since otherwise we can
replace it by W, n Zn - We now have ,I(Wn) = $*(Wn) = A*(Wn n y) +
*(Wn n y') 2 MA*(Wn n y) = M*(Yn Zn) = ,(Wn). Hence L*(Wn n

Y') - 0 and Wn n Y' is a null set. Thus fyfn differs from the characteris-
tic function of Wn by a null function and is integrable. This completes
the proof. From (14) and (15) we at once derive

(16) when 1 e 9, ,u*(Y) < + co is the minimum of the measures ,(Z)
where Z n Y; and ,u(Y) exists if and only if Y is,*-measurable
and has finite outer measure, in which case ,u( Y) = ,I*( Y).

On the basis of the preceding results, we can now establish

(17) when 1 e 9N, a finite function f is measurable if and only if the sets
{x; a < f(x) <,B} are measurable for all (rational) a and 3, a > (3;
and, when f is integraBle, its general integral L(f) is the limit of the
Lebesgue sums

k = +co
a(f; e) = E' OrkuIx; ak _ f(x) < ak+1I

k=-a0

where lim ak = -Co, lim ak = jc_ ak a_ ak+
kco k co

a+- ak e, and 0k = 0 for min (ak iak+ 1) < (, the
summation omitting those terms in which ok = 0.

The measurability of the set {x; a-< f(x) <(3) is equivalent to that of
its characteristic function, expressible as (pp(f) where (°.,9 is the charac-
teristic function of the interval a < X <(. By (9) this function is measur-
able when f is. On the other hand, if (pp(f) is measurable for all a and (3

(or even just for rational a and j3), we see that the functionf. = 0kk (f),
k=m -0

where Pk = pak+l, is measurable (for rational ak, at least) and that its
limit f = lim fe is also, in accordance with (5) and (6). When f is in-

tegrable and yk = min (IakI, Cik+1I) 2 e, we see that 9'k(f) _ iflIlYk,
k =+aa

<f0] 2E/'Yk(Pk(f) 22if by virtue of the inequality I ak I < min (I Cak I,
kX

ak+ I) + e _ 27k; and hence that Vpk(f) and f4 are both integrable in
accordance with (10). The dominated-convergence theorem then yields

L(f) = lim L(f), where L(fe) = ,'OkL(Pk(f)) = o(f; e), as we wished to
0-4.0 kME-co

show. If we apply these considerations to a particular instance of our
general theory we obtain immediately an important theorem :4

(18) if E is any positive linear functional on the real vector-lattice (1 of
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all continuous real functions with compact nucleus on a locally
compact space X, then E can be expressed as an integral in the sense
of Lebesgue uwth respect to a measure on X.

As we have already pointed out, e and E. satisfy our basic postulates and
therefore lead to the introduction of an associated general integral and an
associated outer measure. Since I (3) is valid here, we see that 1 e 9)1 and
hence that (15), (16) and (17) are valid also.

It is an open question to determine what modifications (if any) in our
definitions and procedures will permit a more thorough analysis of the case
where 1 is not measurable.

1 Stone, M. H., "Notes on Integration, I," these PRQCEEDINGS, 34, 336-342 (1948);
cited as I.

2 Mazur, S., "Une remarque sur l'homeomorphie des champs fonctionnels," Studia
Math., 1, 83-85 (1929).

Mr. H. Rubin, while a member of one of my classes, worked out much useful in-
formation on the subject of this paragraph and the next.
, 4 This result is closely related to theorems given by Riesz, F., "Sur certains systimes
singuliers d'equations integrales," Ann. Sci. de l'Ec. Norm. Sup. (3), 28, 33-62 (1911);
Markoff, A., "On Mean Values and Exterior Densities," Mat. Sbornik, 4, 165-191
(1938), especially Theorems 17 and 20; Kakutani, S., "Concrete Representation of
Abstract M-Space," Ann. Math., 42, 994-1024 (1941), especially Theorem 9. The
measure found in (18) is always regular in the sense of Caratb&odory; but it is defined
with certainty only for compact Ga-sets and not necessarily for all compact sets (except,
of course, when X is separable). This measure is therefore not necessarily identical
with the one introduced by Markoff. The distinction is that between "Baire measures"
and "Borel measures" (in the terminology of P. R. Halmos) and is known to be genuine
on the basis of an unpublished example of J. Dieudonne. We shall have more to say
about this situation in our fourth note.

SOME PRELIMINARY RESULTS ON THE SPECTRA OF AsH3,
AsD3 AND PH3*

By VIRGINIA MARIE MCCONAGHIE AND HARALD H, NIELSEN

MENDENHALL LABORATORY OF PHYSICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO

Communicated by R. S. Mulliken, July 30, 1948

Measurements have been made on several of the bands in the spectra
of AsH3, AsD3 and PH3. Work is progressing on.the analysis of these
bands, but since some considerable time will be required to bring this work
to completion we wish here to present a report on the work accomplished
thus far on the spectra of these molecules.

Figure 1 represents the 4.5 A absorption region in the spectrum of AsH3
gas. This is the region studied earlier by Lee and Wu' under a resolving
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